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Abstract. We propose an unsupervised object cate-
gory learning approach, where the output represen-
tations improve classification performance too. The
contribution is threefold: we integrate a ’Network
in Network’ (NIN) approach in unsupervised learn-
ing, improving the representational power of the net-
work for local patches by replacing linear filters with
micro convolutional networks. We learn receptive
fields to connect layers of the network sparsely, and
we propose a new encoding function that introduces
sparsity in a natural way and avoids the necessity
of parameter tuning. The learned model generates
a feature representation of images, used for unsu-
pervised category learning. Results demonstrate that
the obtained image categories reflect true object cat-
egories well. In addition, experimental results on
classification tasks show superiority of the proposed
approach in comparison with an unsupervised state-
of-the-art learning architecture.

1. Introduction

The unsupervised identification of categories is a
crucial aspect of machine learning when ground truth
is either unknown or costly to obtain. In medical
imaging both issues arise frequently, and the discov-
ery of potential markers occurring across large image
sets is of central interest. In this paper we present an
unsupervised approach to learn a model for category
detection. Images are mapped to a new feature repre-
sentation using an unsupervisedly learned Convolu-
tional Neural Network (CNN), and are subsequently
clustered in this representation space. We demon-
strate the capability of the learned model identify-
ing meaningful categories on natural imaging data
in a completely unsupervised way, and show that it
improves performance in comparison with a state-
of-the-art learning architecture. The key contribu-

tion of this paper is to understand if the NIN ap-
proach improves an unsupervised learning architec-
ture in comparison with conventional unsupervised
feature learning approaches. We use the term ’cate-
gory detection’ to stress the difference between our
approach and clustering methods. In contrast to the
classical approach of feeding hand-crafted features
[17, 25, 23] to a clustering or classification [33, 2] al-
gorithm, we aim at learning high level features from
the training data which are both highly discrimina-
tive to the unknown categorical classes, and robust to
low level visual variation.

Related work The idea of learning categories in a
set of unlabeled or weakly labeled data is not new.
Several approaches tackling the problem of object
detection have been proposed [15, 13, 32, 28, 3, 11].
While Grauman and Darrell group images based on a
dissimilarity measure between sets of unordered fea-
tures [15], Faktor and Irani cluster images based on
the idea that images which can be composed from
each other are similar [13]. These methods can be
seen as non-deep learning approaches for learning
image categories without using any labels. In con-
trast, Wu et al. [32] use a weakly supervised multiple
instance learning approach to train a deep CNN for
image classification and annotation. Weakly super-
vised learning is also used by Oquab et al. [28] to
train a deep CNN to detect and localize objects in
images. In that work, labels are given at image-level,
but no object location annotations are used for train-
ing. Schlegl et al. use weakly supervised learning
to link image information to semantic descriptions
of image content [29]. Instead of assigning labels to
images, Cho et al. [3] find object locations based
on hand-crafted features (HOG [10]) in an unsuper-
vised way. Doersch et al. [11] use spatial context as
supervisory signal to train a CNN, where predicting
the relative position of a randomly extracted pair of



patches is used as training objective. As opposed to
the work of Doersch et al. [11], we want to tackle
the problem of identifying categories in cases where
no informative context is available. Other works ad-
dress the challenge of unsupervised learning beyond
unsupervised object detection in a more general way
[7, 5, 6, 4, 12]. Coates et al. [7] compare various
unsupervised learning methods in a single-layer net-
work and show that the best performance is achieved
with K-means clustering as feature learning algo-
rithm. Dosovitskiy et al. [12] train a network unsu-
pervisedly with surrogate classes. These are created
by applying hand-crafted transformations, which are
assumed not to change the identity of the image con-
tent. In contrast, our approach does not use hand-
engineered prior knowledge about the data.

An important issue in building deep neural net-
works is how to choose the connections between lay-
ers (i.e. how to connect the features of the actual
layer with the features of the lower layer), as pointed
out and investigated in [9]. In line with terminology
of previous literature, we denote the grouping of fil-
ters in order to achieve sparse connections between
layers as receptive field learning. Coates and Ng in-
troduced an algorithm to learn receptive fields auto-
matically and reduce the feature dimension for sim-
ple unsupervised training algorithms in higher lay-
ers [5]. Apart from learning connections between
layers, there have also been attempts to learn spatial-
pooling regions using labels [20].

Besides the choice of connections between lay-
ers, the basic network architecture plays an important
role, too. Lin et al. [24] introduced the idea of replac-
ing convolution filters with a ”micro network”, called
NIN approach. The basic idea is to increase the rep-
resentational power of neural networks, respectively
of individual parts, by using a ”micro network” as
part of the overall network. This concept has been
picked up and taken one step further by Szegedy
et al. [31], who describe the ”Inception Module” in
their work. The ”Inception Module” consists of ”mi-
cro networks”, while the module itself is also a part
of a final, even bigger, network. Since both papers
apply the concept successfully to a purely supervised
learning problem, a transfer to unsupervised learning
seems promising, and is evaluated in this paper.

Contribution In this paper, we use recent in-
sights [7, 4, 24, 31] to develop a novel unsupervised
architecture. Specifically, we (1) specify an algo-
rithm that groups similar filters in order to create re-

ceptive fields, (2) introduce the basic idea of the NIN
approach in unsupervised learning and (3) propose
the new mean-sparse encoding function. First, we
use these ingredients to learn image categories from
the dataset (CIFAR-10, STL-10) in a purely unsuper-
vised way. Second, we evaluate the learned feature
representation on a standard supervised classification
task in direct comparison with unsupervised state-of-
the-art approaches [7, 5].

Receptive field learning: High input dimension-
ality can have a negative impact on the success of un-
supervised learning, specifically on the learned fea-
tures of K-means clustering [6]. Furthermore, results
in [5] indicate that grouping of similar features is es-
sential in order to enable unsupervised learning al-
gorithms to detect useful higher-layer features. The
grouping of similar features is also motivated by the
Hebbian principle, ’neurons that fire together, wire
together’ [26]. In our experiments, the proposed re-
ceptive field learning algorithm yields better classifi-
cation accuracy than the one introduced in [5].

NIN architecture: We transfer the core idea of
NIN [24, 31] to unsupervised learning and replace
simple filters with ”micro-conv-nets” to improve the
representational power of individual network com-
ponents. In the unsupervised category detection ex-
periment we used three external evaluation criteria to
determine the performance. The proposed approach
outperforms the state-of-the-art single layer architec-
ture (Section 4.2).

Mean-sparse encoding: On the one hand, mean-
sparse encoding is motivated by the performance of
the triangle function, described in [7]. That encod-
ing scheme also yields sparse outputs by subtracting
a mean value across features. On the other hand, we
want to avoid tuning parameters where possible. In
contrast to the widely used soft-threshold encoding,
the mean-sparse function selects the threshold value
automatically. Mean-sparse encoding achieves com-
parable results on the category-learning task on both
datasets as well as on the classification task on the
STL-10 dataset.

2. Method

Our method consists of a CNN model that maps
the input images to a new representation and a sub-
sequent clustering or classification stage. We present
an approach to train the CNN in a completely un-
supervised way. Then we describe the subsequent
clustering, respectively classification stage.



Figure 1. Illustration of the proposed architecture, revealing the interaction of the techniques described in Section 2. In
general, the input images are mapped to a new feature representation X4 by applying two convolutional and one pooling
layer, where this representation then can be used for category detection or classification tasks. The procedure to learn the
dictionary is depicted for layer 2: (1) The receptive field learning algorithm is used to create R2 receptive fields, followed
by (2) learning sub-dictionaries C2 from the training sets V2 and concatenating them in D2. (3) X3 is computed by using
D2 and mean-sparse encoding. The transition from X1 to X2 and from X2 to X3 conceptually forms an NIN approach,
illustrated in Figure 2.

We work with image patches forming the input
of the first layer, denoted as X1 of size k1 × k1 ×
f1 × X1, where X1 is the number of patches, each
of size k1 × k1 with f1 channels (feature maps),
and 1 being the layer index. Considering one sin-
gle 32-by-32 RGB input image, it is then described
as 32× 32× 3× 1.

For clarity, we represent convolution and pool-
ing as separate layers. Considering a convolutional
layer l, the output of the unsupervised feature learn-
ing stage is a ”dictionary” Dl of size ml×ml×f l×
Dl, where Dl is the number of filters, each of size
ml ×ml with f l feature maps. In the following we
describe the procedure to learn this dictionary (illus-
trated in Figure 1):

1. Create Rl receptive fields (Section 2.1), con-
taining Sl feature maps each, where Sl ≤ f l.
Rl denotes the number of receptive fields, Sl the
number of feature maps in one receptive field
and f l the total number of feature maps in layer
l.

2. For each receptive field unsupervised learning is
performed separately:

(a) Extract V l random patches within the re-
ceptive field to create a training set Vl of
sizeml×ml×Sl×V l, whereml∗ml∗Sl

denotes the feature dimensionality.
(b) Apply the unsupervised learning algo-

rithm (Section 2.2) to Vl in order to gen-
erate a so called sub-dictionary Cl of size
ml ×ml × Sl × C l, with C l denoting the
number of learned filters.

3. We summarize all Rl sub-dictionaries (one for
each receptive field) in one final dictionary:

Each Cl contains filters which are only con-
nected to the feature maps contained in the cor-
responding receptive field. We ”blow up” the
filters Cl from sizeml×ml×Sl toml×ml×f l
by inserting zero values at all other positions. In
terms of feature extraction, this makes no dif-
ference to applying the filters Cl to the corre-
sponding receptive field. This means care has to
be taken that the spatial information is preserved
by linking the non-zero values to the correct fea-
ture maps.

4. All ”blown up” filters build the dictionary Dl.

If two layers are fully connected, Rl = 1 and
Sl = f l. Note thatDl = Rl ·C l must hold. Based on
the dictionary Dl and a given input Xl, we then cal-
culate the output Xl+1 by using a specific encoding,
where the concrete computation steps are described
in Section 2.4.

Regarding the pooling layer, no explicit learning
stage is applied. We use simple average pooling
to aggregate features within feature maps. Average
pooling partitions a feature map by shifting a rectan-
gle of size pl × pl with a stride wl over the map and
outputs the average value for each region.

2.1. Learning Receptive Fields

As dissimilarity gi,j between two filters di and dj

we use a metric defined in Coates et al. [4]1:

gi,j = ‖di − dj‖2 =
√
2− 2d>i dj (1)

1In contrast to our work, Coates et al. [4] use this metric to
do max-pooling over similar units. Additionally, the algorithm
that groups similiar filters differs from ours.



This dissimilarity is used to implement the concept
of grouping together related features in the same re-
ceptive field, hence their relationship can be learned
more finely by the unsupervised learning algorithm
of the subsequent layer. It is important to note that
the filters are all normalized to unit length.

To construct a single receptive field in layer l, we
randomly select one filter from Dl−1 as seed. We
then compute the distance to all other filters of this
dictionary and add the Sl most similar filters to the
actual group. A filter can only be used once as seed.
In this way we get Rl equally sized, potentially over-
lapping, receptive fields that determine the connec-
tions between layer l and l + 1, as illustrated in Fig-
ure 1. Both Rl and Sl are hyper-parameters.

2.2. Learning a Dictionary

For each sample in the training set Vl we subtract
the mean of intensities, divide by the standard devia-
tion and apply ZCA-whitening. Then we use spher-
ical K-means according to Coates et al. [6] as unsu-
pervised learning algorithm that produces filters sim-
ilar to sparse autoencoders or sparse RBMs [7]. C l

centroids cl are randomly initialized from a normal
distribution and normalized to unit length. Damped
updates are used to compute new centroids in every
iteration in oder to minimize the following objective:

minimize
s,cl

∑
i

‖clsi − vl
i‖22 (2)

where si is a vector with only one non-zero entry, for
the closest centroid to sample vl

i. This results in a
dictionary (Figure 1). A detailed explanation of the
algorithm can be found in [6].

2.3. Unsupervised NIN Approach

We increase the representational power of individ-
ual parts in the neural network using a ”micro net-
work” as part of the overall network. Figure 2 il-
lustrates the increased representational power of the
proposed NIN approach. For the purpose of clarity,
we explain this approach using a 6 × 6 × 1 patch as
input and chose concrete parameters in accordance
with the network architecture explained in Section
3.1.

A conventional convolution is shown in Fig-
ure 2 (a), where one filter with m1 = 6 is con-
volved with the input patch to produce a single acti-
vation value. Following the spirit of supervised NIN
learning [24], we replace the single convolutional

(a) (b)

Figure 2. Illustration of two example architectures, where
the filters (orange) are applied to the patch-representations
(black). (a) Conventional convolution with 6-by-6 filters
”6conv”, and (b) the proposed architecture with two con-
volutional layers (m1 = 4 and m2 = 3) ”4/3conv”.

layer with two convolutional layers, where m1 = 4,
w1 = 1, D1 = 11, m2 = 3 and D2 = 1. As illus-
trated in Figure 2 (b), this leads to a deeper architec-
ture and therefore to an increased abstraction capabil-
ity, and can be seen as applying a ”micro-conv-net”
instead of a single filter.

2.4. Mean-sparse Encoding

The mean-sparse function is defined as follows:

x̂l+1 = max(0,Dl ∗ xl) (3)

xl+1 = max(0, x̂l+1 − µ(x̂l+1)) (4)

where ∗ is the operator denoting spatial convolution
of all filters in Dl with sample xl, x̂l+1 is an interme-
diate representation with Dl feature maps and xl+1

is the output representation of the sample. First, the
rectified linear function is applied (Eqn. 3). Then the
mean activation at each position across all feature
maps µ(x̂l+1) is calculated. This leads to a ”mean
feature map” of size kl+1-by-kl+1. This map is then
subtracted from each feature map in the intermediate
representation x̂l+1 (Eqn. 4). With mean-sparse en-
coding, we select the threshold value automatically
for each spatial position in the feature map and at
the same time introduce sparsity in the activations.
This can be seen as a simple form of competition be-
tween features. The use of the rectified linear func-
tion is necessary, since the negative and positive val-
ues would cancel each other out otherwise.

In contrast to previous work [5, 7], we have de-
cided not to preprocess the ”input sub-patches” at
the stage of convolution during feature extraction.
Though this may cause a slight loss in performance,
it enables the possibility to use the fast convolu-
tion modules of Torch7 [8] for our experiments.
This speed advantage is a necessity in practice when
working with large-scale image data.

In our experiments, we compare the mean-sparse
encoding function in the convolutional layers with



the widely used soft-threshold function:

xl+1 = max(0,Dl ∗ xl − α) (5)

where α is a tunable constant.

2.5. Category Learning

Categories are identified by mapping each image
x1 using the unsupervisedly learned CNN to a new
feature representation xL (in Figure 1 denoted as x4):

xL = CNN(x1) (6)

and subsequently performing Spherical K-means
clustering2 [18] with cosine distance. This leads to
cluster centers tj , where each cluster represents a
separate category. To categorize unseen images, they
are mapped to xL and subsequently assigned to the
nearest centroid t = minInd(xL, tj). minInd(·) re-
turns the index of the centroid tj with the minimum
cosine dissimilarity to sample xL, and t therefore
represents the label of the assigned category.

2.6. Classification

The feature representation xL can also be used
to train a classifier (shown in Figure 1) if labels are
available. Here, we train a linear Support Vector Ma-
chine (L2-SVM) in order to evaluate the applicability
of the feature representation for classification.

3. Experimental Setup

Data We conducted experiments on the CIFAR-
10 and the STL-10 datasets. The CIFAR-10 dataset
comprises 50,000 training and 10,000 test images
[21]. The 32 × 32 RGB images can be divided into
10 different categories, where each class consists of
5,000 training and 1,000 test samples. No prepro-
cessing is applied to the images. The test set is only
used for evaluation purposes and is not involved in
any training procedure.

The STL-10 dataset has also 10 classes, but com-
prises only 100 labeled images per class for each
training fold (10 pre-defined folds), 800 test images
per class and 100,000 additional unlabeled images
[7]. The unlabeled images are from a similar but
broader distribution of images and are used for the
unsupervised training of the CNN architecture and
the clustering stage. We down-sample the 96×96×3
images to 32 × 32 × 3, which enables us to use the
same architecture for both CIFAR-10 and STL-10.

2The centroids are updated according to the procedure de-
scribed in [6], where all examples are normalized to unit length
in advance.

(a)

(b)

(c)

Figure 3. Examples of learned receptive fields in 4/3conv
model on CIFAR-10. Each row shows one receptive field
with all 11 filter members of the first layer that are similar
in terms of (a) orientation, (b) color or (c) both.

3.1. Compared Network Architectures

Our experiments are based on two network archi-
tectures, the proposed method, and a state-of-the-art
reference architecture that follows [7]. This allows us
both to compare receptive field learning algorithms
[5], and the underlying network architectures. Fol-
lowing the experiments reported in [7, 5], we use
the approach that achieves the best reported perfor-
mance among all unsupervised single-layer convolu-
tional networks both on the CIFAR-10 and the STL-
10 dataset as reference method. For all convolutional
layers in the experiments, we use stride w = 1.

The reference architecture (6conv) is composed
of a convolutional layer, which is fully connected
to the input layer, and a subsequent average pooling
layer. Regarding the experiments of Coates et al. [7],
the convolutional layer uses a filter size of 6× 6× 3,
which leads to a 27 × 27 × D1 representation after
the first layer. Then average pooling with p2 = 14
and w2 = 13 is applied to get the final feature repre-
sentation 2× 2×D1 of each image.

The proposed architecture (4/3conv) replaces the
convolutional layer with ”micro-conv-nets”, as de-
scribed in Section 2.3, while the average pooling
layer remains the same. For better understanding,
this architecture can also be described as consist-
ing of two convolutional layers with m1 = 4 and
m2 = 3. While the first convolutional layer is fully
connected to the input layer (R1 = 1 and S1 = f1),
the connections between the first and second convo-
lutional layer are sparse, since we choseR2 = 32 and
S2 = 11 if D1 ≤ 400, and S2 = 22 if D1 > 400.

The dictionary of the first layer D1 exhibits a size
of 4 × 4 × 3 × D1, and the sub-dictionaries C2 a
size of 3 × 3 × S2 × D2

32 , where D1 = D2. For
each receptive field we learn D2

32 filters, which leads
to D2 feature maps in D2. Therefore, each receptive
field in the second layer has a feature dimension of
99 = 3 · 3 · 11 if S2 = 11 and 198 = 3 · 3 · 22 if
S2 = 22, which serves as input for the unsupervised
feature learning algorithm in the second layer.



Considering the case where D1 = D2 = 800,
we learn 800 different ”micro-conv-nets” instead of
learning 800 different simple filters. Since we learn
32 receptive fields, in each field 25 ”micro-conv-
nets” share the same first layer and differ only in the
second layer. This enables the possibility to learn
various relationships of the first layer filters in the
second layer.

3.2. Evaluating Category Learning

We evaluate if the unsupervised learning captures
meaningful categories, by comparing learned cate-
gories with ground truth classes.

In this experiment we compare the 4/3conv with
a 6conv model (Section 3.1). While the reference
architecture (6conv) uses only soft-threshold encod-
ing, we apply both soft-threshold and mean-sparse
encoding in the proposed architecture (4/3conv). For
all experiments, we do hyperparameter tuning of the
soft-threshold function with the following values:
α = {0.1, 0.2, 0.25, 0.3, 0.4, 0.5}.

Regarding CNN parameters, we only varied the
number of learned filters (100, 200, 400, 800). Both
feature-wise and no normalization of xL is evaluated
in the experiments. For Spherical K-means cluster-
ing, we used 10 clusters in all experiments and varied
the initialization of the centroids (from a normal dis-
tribution or random examples as seed) as well as the
re-initialization procedure in case of empty clusters
(re-initialization from a normal distribution or with
random examples). To ensure a fair comparison, the
parameters were the same for both architectures.

For the purpose of selecting the final model, the
clustering results are evaluated on the train set using
three external evaluation criteria. The Adjusted Rand
Index (ARI) [19], Normalized Mutual Information
(NMI) [30] and Purity [34]. While −1 ≤ ARI ≤ 1
(random labels lead to values close to zero, perfect
labels to 1), both NMI and Purity range between 0
(random labels) and 1 (perfect labels). For the se-
lected category models with the best ARI values on
the train set, the external measures are also calculated
on the test set in order to evaluate the generalization
performance.

3.3. Evaluating Unsupervised Selection of Cate-
gory Models

Besides an supervised selection of the model, we
also evaluate if we can choose the category model
unsupervised. Instead of using the external evalua-
tion criteria, an internal value is used to select the

final model, namely the Davies-Bouldin (DB) in-
dex [16, 1], which has been calculated on the training
data. A small value indicates compact and well sep-
arated clusters, hence we selected the model with the
smallest DB index. The final models are evaluated
with the external evaluation criteria on the test set in
order to assess the quality of the chosen model.

3.4. Evaluating Classification

We evaluate how the learned features perform on
a standard supervised classification task. In partic-
ular we train an L2-SVM using the LIBLINEAR li-
brary [14] on the feature representation xL. Both for
CIFAR-10 and STL-10, 20% of the training images
are used as validation set to determine the regular-
ization parameter of the classifier. While we receive
one final L2-SVM on the CIFAR-10 dataset, we ob-
tain ten L2-SVMs for the STL-10 dataset (one for
each training fold).

Again, we compare 4/3conv with 6conv using a
varying number of filters. Additionally, in order to
compare the proposed receptive field learning algo-
rithm with a state-of-the-art method, we also train
4/3conv architecture with the receptive field learning
method introduced in [5]. For a fair comparison, we
train the same number of receptive fields and select
the same feature dimension for both receptive field
learning algorithms.

4. Results

We report results illustrating the receptive fields,
and quantitative results comparing the proposed ap-
proach with state-of-the-art methodology for unsu-
pervised category learning as well as for classifica-
tion. Furthermore, we evaluate to which extent the
models can be selected based on an internal criterion.

4.1. Receptive Fields

In Figure 3 three typical examples for the learned
receptive fields are illustrated (4/3conv model on
CIFAR-10). It can be seen that the algorithm in-
corporates filters with similar orientation but varying
color (a), similar orientation and color (b) and similar
color but varying orientation (c).

4.2. Category Learning

Table 1 shows that the proposed method 4/3conv
outperforms the conventional approach 6conv for all
evaluation measures on both datasets. As expected,
both outperform clustering applied directly to the in-
put images and random clustering.



Method
CIFAR-10 STL-10

ARI NMI Pur. ARI NMI Pur.

Random 0 0 0.1 0 0 0.1
SKM 0.06 0.10 0.24 0.06 0.12 0.26
6conv[7]+ SKM 0.09 0.16 0.27 0.10 0.18 0.28
4/3conv + SKM 0.10 0.18 0.30 0.12 0.20 0.29

Table 1. ARI, NMI and Purity are calculated for each
model on the train data in order to select the final model.
This table summarizes the values of the final models (both
for CIFAR-10 and STL-10), calculated on the test set. Re-
sults for random and Spherical K-means (SKM) cluster-
ing applied directly on the images using 10 clusters are
shown, too.

In terms of hyper-parameter settings, experiments
showed that neither the type of initialization, the type
of re-initialization nor the number of filters in the
CNN has a strong influence on the external measures.
Therefore, a lower number of filters seems prefer-
able to reduce computation time. Furthermore, re-
sults indicate that feature-wise normalization helps
to improve the performance. For example, the mean
NMI of 4/3conv model is 0.146(±0.012) without and
0.170(±0.006) with normalization on the CIFAR-
10 dataset. Furthermore, both encoding functions
achieve comparable performance on both datasets
(e.g. on STL-10 the mean NMI is 0.194(±0.012) for
mean-sparse and 0.190(±0.008) for soft-threshold
encoding).

In-Depth Evaluation of Learned Categories Re-
sults demonstrate that the 4/3conv model with the
best external evaluation values categorizes images re-
flecting true object categories well, as can be seen in
Figure 4. The confusion matrix of the ground truth
class labels and the predicted category labels of the
CIFAR-10 dataset is plotted in Figure 4 on the left-
hand side. Each row of the matrix corresponds to one
learned category, while every column corresponds to
one ground truth class. The confusion matrix is re-
arranged according to the Hungarian method [22].
On the right-hand side of Figure 4 the categories are
visualized. For each centroid, the ten nearest test
images are plotted to illustrate the characteristics of
each cluster.

When looking at the visualization of the learned
categories, it is important to bear in mind that the
given ground truth categorization is not the only pos-
sible reasonable one. The confusion matrix in Fig-
ure 4 shows that the category model distinguishes

Method
CIFAR-10 STL-10

ARI NMI Pur. ARI NMI Pur.

6conv[7]+ SKM 0.08 0.15 0.27 0.09 0.17 0.28
4/3conv + SKM 0.10 0.18 0.30 0.12 0.20 0.29

Table 2. This table shows ARI, NMI and Purity (calculated
on the test set) for unsupervised selected models (via DB
Index, calculated on the training set).

quite clearly between animals and non vital objects.
While the clusters in row 1, 2, 3, 9, and 10 corre-
spond to non vital objects, animals are categorized
by the other centroids. As can be seen both in the
confusion matrix and the nearest images, cluster ”2”
mainly groups white automobiles. Centroid ”3” rec-
ognizes red automobiles and trucks, whereas cluster
”4” mainly groups animals with white background.
A big part of deer and bird images is contained in
category ”5”. Also centroid ”6” is a reasonable cate-
gory, since cats and dogs have a similar appearance.
While the major part of frogs is contained in cluster
”7”, a large part in category ”8” is made up of horse
images. Category ”9” mainly contains ships and air-
planes, where all visualized images have a clearly
visible horizontal edge in the middle of the image.
The major part of category ”10” consists of automo-
biles and trucks with a bright background.

4.3. Unsupervised Model Selection

On both datasets unsupervised model selection
based on the DB index chooses the 4/3conv mod-
els that also have the best external evaluation crite-
ria if an additional test set is used (Table 2). For the
6conv architecture comparable models are selected
for both datasets, as can be seen by comparing Ta-
ble 1 and Table 2. The Pearson correlation coeffi-
cient [27] between the DB index and the external cri-
teria ARI(−0, 55), NMI(−0, 37) and Purity(−0, 52),
indicates that this is not a selection by chance.

4.4. Classification Results

The classification results, obtained on the test set,
are illustrated in Figure 5(a) for CIFAR-10. Fig-
ure 5(b) contains the results for STL-10, where the
error bars denote the standard deviation of the test
accuracy, since 10 training folds are evaluated.

The proposed 4/3conv architecture clearly outper-
forms the conventional 6conv architecture on both
datasets. While mean-sparse encoding leads to a
slight performance decrease on CIFAR-10, it shows
comparable results on STL-10 in comparison with
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Figure 4. On the left we show the confusion matrix between clusters learned with a 4/3conv model and ground-truth
classes of CIFAR-10. On the right, we show for each cluster center the nearest images in the test set.
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Figure 5. Test accuracy: This plot illustrates the classifi-
cation performance of different approaches on the test set
for a varying number of filters on the (a) CIFAR-10 and
the (b) STL-10 dataset. While the proposed receptive field
learning algorithm is denoted as RF-dict, RF-single refers
to the state-of-the-art receptive field learning method in-
troduced in [5].

the soft-threshold function.

Figure 5 also provides results for the 4/3conv
architecture using a state-of-the-art receptive field
learning algorithm (RF-single [5]) in order to verify
that the performance gains we achieve are not only
the result of using a deeper architecture. As can be
seen in Figure 5, the connections which are learned
by our algorithm lead to a higher performance than
the connections learned by the RF-single approach
on both datasets.

5. Conclusion

In this paper we introduce a new receptive field
learning algorithm, transferring the concept of the
NIN approach to unsupervised learning, and pro-
pose a new encoding function, too. We evaluate how
this contributes to improve unsupervised visual cate-
gory learning as well as classification in comparison
to unsupervised state-of-the-art algorithms. Results
demonstrate superiority of the proposed method both
on category learning and classification tasks. Finally,
we demonstrate unsupervised category-model selec-
tion, leading to a fully unsupervised category detec-
tion method which does not lead to a performance
decrease in comparison with model selection based
on external criteria.
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