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Abstract. This paper presents a technique to auto-
matically process image sequences taken with hand-
held cameras into stabilized animations. This in-
volves the alignment of images of different viewpoints
and the detection and stabilization of the scenes
static background while preserving the motion of
moving objects. For this we present two different ap-
proaches that each solve subproblems. The first ap-
proach aligns the images by tracking SIFT features
through the sequence and calculating linear map-
pings for each image. The second approach refines
the results of the first by using block-motion analy-
sis to divide the images into foreground and back-
ground segments, correcting the motion vectors of
each segment and rendering a final sequence using
the corrected motion vectors. The effectiveness of
both approaches is demonstrated on several sample
sequences.

1. Introduction

The problem this paper approaches is the stabiliza-
tion of image sequences—especially sequences with
a low and irregular frame rate which implies a large
and varying time offset between subsequent frames.
The typical use case would be a sequence of pictures
taken from a handheld camera.

Given an image sequence an algorithm should au-
tomatically process the sequence and create a stabi-
lized animation. The images can contain noise and
significant warps of the camera viewpoint as they
would occur in a sequence of photos taken with a
conventional camera without using a tripod or other
tools to stabilize the device. The task is to create a
smooth animation with a minimum of jitter. An as-
sumption is that parts of the scene contain a static
background without significant motion and that the

sequence contains no large camera motions like a
camera pan. However, the scene may contain moving
objects and motion and the camera viewpoint may
be warped irregularly between subsequent frames as
long as the images still intersect significantly. A fur-
ther assumption is that the camera does not move into
the scene. However, the camera zoom may vary be-
tween images.

The resulting animation should be stabilized in a
way that the motion of the static background of the
scene is minimized. This can be measured by com-
paring the amount of motion before and after sta-
bilization. The amount of motion can be measured
based on the optic flow or motion detection tech-
niques like frame differencing.

In this paper we present two different approaches
to process image sequences into stabilized anima-
tions. Both stabilize the image sequence by reducing
the amount of motion. However, they use different
techniques and solve different subproblems. The ap-
proaches will be referred to as feature-based stabi-
lization and block-motion stabilization.

The feature-based stabilization first detects SIFT
features in each image and tracks them through the
sequence. The feature tracks are used to estimate lin-
ear mappings to align the images. The tracks are
in turn filtered using the calculated mappings and
again used to calculate better estimates for the map-
pings. The process is repeated until the quality con-
verges. The final mappings are used to transform the
sequence into a stabilized animation.

The block-motion stabilization divides the images
into a block grid and estimates the motion vectors
using the temporal median of the sequence as a ref-
erence. The motion vectors are used to classify
the blocks into background, dynamic and foreground
blocks. Segments of blocks of the same type are



identified and tracked through the sequence. The mo-
tion vectors of the blocks of each segment are cor-
rected based on their type and a stabilized animation
is rendered using the corrected motion vectors.

While both approaches can be used independently,
it is recommended to employ them sub-sequentially
with the feature-based stabilization first and the
block-motion stabilization second since the effective-
ness of the latter depends on the temporal median
which is in turn relying on a certain degree of stabil-
ity in the background and also because the run-time
performance of the approach suffers immensely if its
configured to tolerate large motions.

1.1. Related Work

The main challenge in the stabilization task is
finding out how the images are related to each other
and to draw conclusions about their viewpoints in
the global scene. The problem is known as image
registration/alignment in terms of panorama stitch-
ing. Brown [2] gives an overview of different ap-
proaches for image registration. Approaches di-
vide into intensity- and feature-based approaches.
Feature-based approaches are recommended by Zi-
tová and Flusser [13] for images with distinctive and
easily detectable objects. This is usually the case in
photographs. Zhang describes in [11] how the pro-
jective transformation parameters can be calculated
from a number of point correspondences. However,
not all feature matches are correct and features de-
tected in dynamic parts of the scene have to be ex-
cluded. A RanSaC approach is described by Dung et
al. [3] to find the best projective mapping given a set
of feature matches.

For the block-motion stabilization the basic prob-
lem remains unchanged, but we assume that the
background of the image sequence is already stabi-
lized up to a certain degree. The goal is to further in-
crease the visual stability in the scene. Beauchemin
et al. [1] give an overview of different approaches
to calculate the optical flow. The approaches split
in block-based, differential (e.g., the Horn–Schunck
method [6]), phase correlation and discrete optimiza-
tion methods (Glocker et al. [5]). Given its promis-
ing performance the block-based method was chosen
for determining the optical flow. The approach then
analyses and corrects the optical flow using ideas
from Huang et al. [7] and Vella et al. [10].

2. Feature-based Stabilization

This section is about an algorithm using the
feature-based stabilization approach. The idea is
to track SIFT features through the animation to de-
termine the relative transform between the images.
Since tracking is not reliable and the scene can
contain dynamic elements (moving objects, motion,
noise) the algorithm tries to filter those features that
were tracked correctly and probably do not belong to
dynamic parts of the scene. Using the filtered fea-
tures the algorithm calculates a linear mapping for
each image that describes how the image has to be
transformed to fit in the global scene. As a final step
the sequence is cropped to an intersecting area be-
tween all mapped images to avoid empty regions in
the animation. The result is a stabilized animation.

In the first step we calculate a set of SIFT features
for each image. For each Image Ii in the input image
sequence Iin we calculate the associated feature set
Si and append it to the vector S.

In the next step the features sj,i are matched sub-
sequently through all Si to form a feature track tj .
Therefore, for each sj,i ∈ Si, the algorithm finds a
sj,i+1 ∈ Si+1. In case the algorithm fails to match
a sj,i, sj,i+1 gets assigned nil and sj,i is used to
find a match in Si+2 and so forth until a new match
is found. This way the algorithm can compensate
for temporary obscured features. However, the algo-
rithm requires a feature to be present in S0 to form
a feature track. A track tj can be represented as a
vector of features with one entry for each Si, i.e.,

tj = (sj,0, . . . , sj,N−1 | sj,k ∈ Sk). (1)

All tracks tj are stored in a set of feature tracks T .
What follows is the estimation of the mapping be-

tween the images. All images Ii ∈ Iin are mapped
to the first image I0 using the information in T . The
core of the algorithm is an iterative loop that calcu-
lates the mappings and keeps track of the quality of
the current batch. If the quality decreases the loop
ends.

For the calculation of the quality measure Φ of a
vector of mappings M we define an error e(tj) for
a track tj that is the sum of the squared distances
between the mapped (sj,0 mapped by Mi ∈ M) and
observed (sj,i ∈ tj) features that belong to the track.
Further we declare the reliability r(tj) of a track that
is defined as the ratio between the size of the track
(all features belonging to the track, not counting nil
entries) and the product of the error e(tj) of the track



Figure 1: Feature tracks before (left) and after (right) filtering: The current feature locations are marked in red,
the previous locations are indicated by green lines.

and the size N of the image vector. The quality of a
vector of mappings Φ is calculated as the sum of the
reliabilities r(tj) of all tj ∈ T .

The tracks used for the calculation of the map-
pings are filtered in every iteration. The idea is to
only take reliable tracks into account for the genera-
tion of new mappings (e.g., Figure 1). First we define
a vector Tsort that contains all tracks tj ∈ T sorted
by their reliability r(tj) in descending order. The fil-
tered Tracks T ′ are then selected using a threshold
τFilter where 0 < τFilter < 1. The threshold deter-
mines how many percent of the original tracks are
filtered. Since the vector is sorted the algorithm just
copies the n first elements.

The mappingsM are calculated using a RanSaC
approach. For a mapping Mi the algorithm extracts
a set of pairs of features a = {〈sj,0, sj,i〉, . . . } where
each pair consists of a sj,0 ∈ S0 and a sj,i ∈ Si
of the same track tj . The RanSaC algorithm loops
for K times and searches for the mapping with the
best quality ω. The set sa is calculated by randomly
selecting c pairs from the set a. Depending on the
configuration affine or projective mappings are cal-
culated from sa. The quality ω of the mapping is the
ratio between the size of a and the summed absolute
distances between mapped (sj,0 mapped by Mi) and
observed (sj,i ∈ p[1]) feature coordinates for all pairs
p ∈ a.

The final step is to warp the images using the esti-
mated mappings. We assume that a library function
handles the actual mapping and creates a mapped im-
age I ′i for every Ii. The resulting image vector Iout is
the stabilized animation. However, since the mapped
images have different boundaries it is important to

crop the images to the biggest intersecting rectan-
gle to avoid empty spaces. The biggest intersecting
rectangle can be found by mapping the corner coor-
dinates of the image bounds. This assumes that all
images have the same height h and width w.

3. Block-motion Stabilization

This section is about an algorithm developed us-
ing the block-motion stabilization approach. The
idea is to calculate the motion of individual blocks
of every image and analyze it to split the scene into
background, dynamic and foreground segments. The
segments are processed differently depending on the
type and the motion is corrected to reduce jitters and
distortions.

The algorithm starts by processing the input image
sequence Iin to generate a smoothed image sequence
Ism and a reference image Iref. This information is
necessary for the motion estimation. Ism is gener-
ated by calculating the average for every pixel in its
3×3 neighbourhood. This way high frequency noise
is attenuated which proved beneficial for the motion
estimation step.

The reference image Iref is generated by calcu-
lating a temporal median over the entire image se-
quence. The temporal median is an easy way to stabi-
lize the background and eliminate the foreground in
a scene with motion. In general the temporal median
works well as long as the moving objects occlude the
background only for a fraction of the time. Fore-
ground objects that remain still for a long time may
get part of the reference image. However artifacts
in the reference image not necessarily affect the final
result as it is used for motion estimation only, specif-



ically to determine stable background segments. Iref
is used to calculate the motion vectors for the blocks.
After calculating the temporal median the image Iref
is also smoothed with a 3× 3 average filter.

In the next step block-motion estimation is used
on the preprocessed image sequence. First each im-
age of Ism is divided in a grid of blocks Bi with P
columns and Q rows where each block bi,p,q is asso-
ciated with n × n pixels at pixel position (u, v) =
(n · p, n · q) in the source image Ism, i.

The motion vector xi,p,q for each block bi,p,q is
then estimated by finding the maximum normalized
cross-correlation value v1 in the w × w neighbour-
hood of position (u, v) in the reference image Iref.
Also the second highest value v2 is determined to
check whether the maximum value is a unique local
maximum. Based on this information a first classifi-
cation is applied to the blocks.

What follows is the determination of anchor points
based on the correlation between motion vectors of
neighbouring blocks. The correlation is calculated
pairwise between the source block bp,q and its adja-
cent neighboursNp,q. The correlation value is calcu-
lated as the normalized cross-correlation of the mo-
tion vectors of two blocks over all images of the se-
quence. The final neighbourhood correlation value
cp,q is the mean value of the correlation values cal-
culated for all neighbouring blocks. A high value for
cp,q indicates a stable background block in respect of
the entire sequence. We further compare the motion
vector xi,p,q with the mean motion vector x̄i,p,q of the
neighbouring blocks. Based on this information we
determine anchor blocks in specific images.

Having detected stable anchor blocks for every
image a first detection run processes the sequence in
order to identify background blocks. Starting with
the anchor points, a region growing approach recur-
sively processes all neighbours bi,p′,q′ ∈ Ni,p,q of the
current block bi,p,q that have a similar motion vec-
tor and classifies them as background blocks. In a
follow-up step the foreground segments are extended
in order to avoid visual artifacts caused by motion at
the block borders.

The blocks that remain at this point might be gaps
in the background segments with incorrect motion
vectors or belong to dynamic segments. Dynamic
segments contain stochastic motion or lack the struc-
ture necessary for reliably determining the motion
vectors. For example the sky or the surface of the
sea would be classified as dynamic segments. Every

remaining block is classified based on the classifica-
tion of its neighbours.

Each image are then divided into segments of
blocks of the same type (e.g., Figure 2). The result
is a set of spatially separate segments for every block
type and for every image. We define three sets SFg
(foreground), SDy (dynamic) and SBg (background)
where each element Si, j is a segment of spatially con-
nected blocks in a specific image Ii of the sequence.

With the images of the sequence analyzed and
split into three sets of segments, tracks of segments
through subsequent images are calculated. This is
done by intersecting the segment of subsequent im-
ages in each set and calculating a directed graph that
represents the connections between the segments.
This graph is filtered to eliminate all foreground and
dynamic segments belonging to tracks that span over
less than tmin tracks. The filtered segments are con-
verted to background segments. This is done to re-
move short motion sequences that are most likely in-
correctly classified and would disturb the visual flow.
In the implementation the default value for tmin is 4.

The segments are then analyzed to correct the mo-
tion vectors. This is most important for dynamic and
foreground segments where the motion vectors are
very likely to be incorrect, but also for background
segments to smoothen the motion and filter outliers.
While the background segments are corrected by
simply setting the motion vector of each block to
the mean motion vector in its block neighbourhood
the foreground and dynamic segments are corrected
by spreading the motion vectors of the surrounding
background blocks into these segments. Both is done
at once by an iterative algorithm that corrects all re-
maining blocks that have one or more neighbouring
blocks that are classified as background blocks or
have been corrected in a previous iteration (using the
mean motion vector of mentioned blocks). This way
the surrounding motion vectors smoothly spread into
foreground segments.

Having classified the blocks and corrected their
motion vectors in every image of the sequence the
output sequence Iout is rendered using this infor-
mation. First a stable background image Ibg is ex-
tracted from the sequence. This is done by find-
ing the first anchor block in the sequence for every
block bp,q or when inapplicable the first background
block and copy its pixel content to Ibg. The corrected
motion vector xi,p,q is used to translate translate the
blocks source pixel coordinates. Blocks that never
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Figure 2: The original sequence (a), foreground (b), background (c) and dynamic (d) segments.

are part of a background segment are not rendered
and appear black in the background image. With
the background image Ibg extracted it is copied to
all Iout,i. What is left is to render the foreground
and dynamic segments to the output sequence. At
some point there was the decision whether to keep
the motion of dynamic segments or to eliminate it.
A future implementation could feature the option to
eliminate the dynamic segments and only show the
stable background for those segments. This would
require an adaption of the background extraction
part. However, for the project the motion of dy-
namic segments is preserved and thus the dynamic
segments are treated like foreground segments. For
every output image Iout,i the dynamic segments and
foreground segments are rendered using their cor-
rected motion vectors. However, visible artifacts
are caused by different lighting conditions through-
out the source image sequence. To remove these ar-
tifacts photometric stabilization and blending tech-
niques could be applied. The effect of the stabi-

lization algorithm becomes obvious when comparing
the results of a frame differencing operation (which
compares the difference in pixel intensity over sub-
sequent frames) on the sequence before and after the
stabilization.

4. Evaluation

Both approaches have been implemented as Im-
ageJ plugins and tested on a test set of ten sam-
ple sequences. The two plugins have been exe-
cuted subsequently in two steps with the feature-
based stabilization first and the block-motion stabi-
lization second. Therefore, the following figures will
refer to three data sets: Original, Stabilized and Fi-
nal. Original stands for the original image sequences
before any stabilization has been applied. Stabilized
refers to the stabilized image sequences generated
by the first (feature-based) stabilization plugin. Fi-
nal are the image sequences generated by the sec-
ond (block-motion) stabilization plugin using the se-
quences from Stabilized as input. Three metrics (see



4.1) are used to measure the stability of a sequence.
The metrics are calculated before and after each sta-
bilization step. By relating the metrics to the initial
value the improvement in stability (i.e. decrease of
motion) is evaluated as a percentage number. This
way the effectiveness of both algorithms is measured.

4.1. Metrics

The following three metrics have been used to
measure the motion in a sequence:

Difference metric: The average intensity difference
calculated as the sum of the absolute intensity
differences of every pixel pair at the same po-
sition (u, v) and of two subsequent images Ii
and Ii−1 divided by the number of pixel pairs
(N − 1) · w · h.

Threshold metric: The percentage of pixels af-
fected by motion. Like the difference metric,
but the difference value of each pixel pair is
thresholded by a value τm and every pair ex-
ceeding the threshold value is counted. The
metric is defined as the ratio between the count
of masked pixel-pairs and the total count of
pairs.

Motion vector metric: The sum of the magnitudes
of all motion vectors of every image in the se-
quence. Evaluated only on the sequences of the
Stabilized and Final data sets.

4.2. Results

Each of the three metrics has been evaluated for
all sample image sequences in the data sets Original,
Stabilized and Final. The charts in Figure 3, 4 and 5
visualize the improvement of each sample sequence
over the processing steps. Note that the values in the
charts are not absolute but relative to the result of the
leftmost data set (which is in turn 100%). Since all
metrics measure the amount of motion a decrease of
the value marks improved stability.

Figure 3 shows the chart for the difference met-
ric. The plugins always achieve an improvement with
shaky sample sequences faring better in the first sta-
bilisation step compared to still sample sequences
and sequences with small moving objects yielding
better results than sequences with widespread and
complex motion in the second stabilization step.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Original Stabilized Final

Difference Metric

Leaves

TownA

TownB

Climbing

Seaguls

Sea

River

Mountain

Juggler

Figure 3: Results for the difference metric. The aver-
age for the stabilized sequences is 43.2% (σ of 16%).
The average for the final sequences is 26.8% (σ of
18.2%).
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Figure 4: Results for the threshold metric. The av-
erage for the stabilized sequences is 21.3% (σ of
22.3%). The average for the final sequences is 19.6%
(σ of 21.9%).
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Figure 5: Results for the Motion vector metric. The
average for the final sequences is 18.2% (σ of 9.1%).

Figure 4 shows the chart for the threshold met-
ric. The plugins achieve improvements with one ex-
ception at the second stabilization step. While the
first stabilization step always achieves significant im-
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Figure 6: Visualizations of the threshold metric for
the original (a), stabilized (b) and final (c) sequence.

provements with better results for sequences with
small areas of motion the second stabilization step
seems to have no consistent effect in terms of this
metric.

Figure 5 shows the chart for the motion vector
metric with all sequences yielding significant im-
provements. Based on these results it is reasonable
to state that the algorithms are successful in stabiliz-

ing image sequences with the feature-based stabiliza-
tion achieving reliable and significant improvements
in stability and the block-motion stabilization adding
additional refinement.

5. Conclusions

The aim of the project was to design and imple-
ment algorithms to stabilize image sequences. While
the first one is based on SIFT features the second
utilizes block-motion analysis to stabilize image se-
quences.

The stabilization results of the first algorithm
are comparable to the solution Google offers for
its Google Photo auto-animation stabilization. The
implementation even succeeds for sequences that
Google Photo fails to create an animation for (state of
October 2016). However the method is limited by the
projective mapping used to align the images. This is
most obvious in scenes with high depth variation i.e.
with objects close to the camera. Simple projective
mapping proves insufficient to accurately align im-
ages of a three dimensional scene. The SIFT features
would allow for sub-pixel accuracy, but the projec-
tive mapping calculated from the feature tracks ig-
nores the depth of the scene. This is why it can never
fully align images of scenes with a high amount of
depth disparity.

While the second algorithm is not as tolerant as
the first one in terms of the input data it is capable
of dramatically reducing the amount of motion and
noise. The algorithm assumes that the background
of the input image sequence is already stabilized up
to a certain degree. The implementation allows to
adjust parameters to deal with different scenarios.
However there is still much potential for improve-
ments. In terms of quality the algorithm lacks a strat-
egy to deal with artifacts caused by different lighting
through the images. Also the accuracy of the motion
detection using normalized cross-correlation only is
not optimal, especially at the blocks borders. Alter-
native means to create a reference image other than
the temporal median could yield better results (e.g.,
[4]). Also blending techniques could reduce the ar-
tifacts at segment borders (e.g., [8]). Another im-
portant point is the background extraction part where
a more sophisticated approach could yield more re-
liable background images. A possible improvement
would be to take the correlation between background
blocks into account to select the best block.

In terms of performance the implementation



would benefit from faster techniques for the block-
motion estimation part (e.g., [12]). The implementa-
tions of both algorithms still have a lot of potential
for optimization. However, as a proof-of-concept the
implementations succeeded and are able to generate
quite impressive results (e.g., Figure 6). The evalua-
tion confirms this statement as all three metrics show
significant improvements in terms of stability after
applying the algorithms.

The conclusion of this paper is that feature-based
and block-based approaches can be very effectively
used for stabilization and can be applied to auto-
matically process image sequences. The algorithms
presented in this paper could be used for practical
applications, however additional work in automatic
parametrization would be necessary to achieve opti-
mal results. More information on the project can be
found in the corresponding master thesis [9].
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