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Abstract. We propose an extension to the state-
of-the-art Faster R-CNN detection model for multi-
modal pedestrian detection from RGB-D images. The
proposed architectures address this problem by fus-
ing convolutional neural network (CNN) represen-
tations. We elaborate two architectures, which pri-
marily differ in the position of the fusion inside
the model, and further compare several static and
parametrized fusion layers. Moreover, we show how
recent advances in the area of non-maximum sup-
pression (NMS) can improve the detection results of
our models and make them more robust in applica-
tions with varying pedestrian densities. Our models
are trained and evaluated on a custom dataset com-
prising images of crosswalk scenes taken from an ele-
vated viewpoint. This viewpoint results in uncommon
and highly variable poses of pedestrians, demanding
powerful detection models.

1. Introduction

Pedestrian detection, as a specialized case of ob-
ject detection, is a crucial pre-processing step for
many applications in computer vision, including vi-
sual surveillance, autonomous vehicles, automated
video analysis, etc. The major research interest
in these areas are classical surveillance scenarios,
i.e. pedestrians are captured from a slightly elevated
viewpoint which results in a long-range field-of-
view. Thus, classical pedestrian detectors are specif-
ically designed for side-view and front-view pedes-
trians in an upright pose and are trained on datasets
comprising such images [2, 8].

In this work, we address the problem of pedes-
trian detection from an elevated viewpoint in RGB-
D images. In particular, we rely on stereo cameras
mounted on top of traffic lights filming downwards
to capture the pedestrian wait area below. This over-

Figure 1: Example images of pedestrians from a clas-
sical surveillance viewpoint of the KITTI [8] (top
row) and our elevated viewpoint (bottom row).

head viewpoint introduces significant differences in
human appearance and pose compared to classical
surveillance viewpoints, where the effects of per-
spective are negligible. Figure 1 illustrates some
of these differences. In contrast to traditional long-
range field-of-view scenarios, the pose and appear-
ance of a person captured from our high elevation
viewpoints heavily depend on the relative position to
the camera. For example, the only visible parts of a
person standing just beneath the camera are the head
and shoulders. People at the border of the field-of-
view, on the other hand, appear elongated and ro-
tated about their vertical axis. Due to these trans-
formations, it is not possible to make common as-
sumptions about the location of certain parts inside
a person’s bounding box (e.g. the head is not strictly
at the top and the legs are not always at the bottom).
Another side effect is the increased variation of the



bounding box aspect ratios. The typical assumption
of a nearly fixed, upright aspect ratio [2, 6] cannot be
made in our overhead scenario, since bounding box
shapes range from rectangular (both upright and hor-
izontal) to square.

Since traditional single-template based ap-
proaches for pedestrian detection (such as histogram
of oriented gradients (HoG) based detectors, e.g. [2])
cannot cope with large pose variations, we utilize
state-of-the-art CNN based detectors. These detec-
tors are capable of learning strong representations,
and thus are capable of detecting objects with large
pose variations [9, 22].

Our main contribution is to adapt the Faster R-
CNN [22] model for RGB-D images and fine-tune it
on custom datasets recorded from our overhead view-
point. We propose different fusion architectures and
fusion layers to fuse the RGB and depth modalities
inside the model. We perform a detailed evaluation
of our architectures to identify the benefits of vari-
ous fusion approaches. Our experiments show that
integrating depth clearly improves detection perfor-
mance compared to RGB images only. Further, we
integrate an additional CNN for the task of NMS
based on work of Hosang et al. [13], and show that it
helps to make the detector more robust to scenes of
varying pedestrian densities.

The remainder of this paper is structured as fol-
lows: Section 2 reviews related work, Section 3 de-
scribes our detection pipeline, Section 4 discusses
our evaluation results. Finally, Section 5 concludes
our work.

2. Related Work

Traditionally, object detectors are categorized into
holistic HoG based detectors (e.g. [2]), deformable
part model (DPM) based detectors (e.g. [6]), boost-
ing based detectors (e.g. [3]), and bag-of-words
based detectors (e.g. [25]). HoG and DPM based
detectors operate in a sliding-window manner over
the whole image, whereas bag-of-words based ap-
proaches rely on pre-computed object proposals.

With the success of deep learning methods in re-
cent years [16], detectors based on CNNs have been
shown to outperform those traditional approaches. A
seminal work in this area is R-CNN proposed by Gir-
shick et al. [10], which makes use of a classifica-
tion network by applying it to a set of pre-computed
object proposals and feeding the extracted features
to class-specific SVMs in order to classify each re-

gion independently. Its successors Fast R-CNN [9]
and Faster R-CNN [22] further improve over it by
sharing computation on single images with region
of interest (RoI) pooling and integrating the region
proposal generation into the network, respectively.
Other CNN based detectors (e.g. [18, 21]) operate
in a fully-convolutional manner and do not rely on
region proposals to generate detection hypotheses.

The particular setup of pedestrian detection from
an elevated viewpoint has received only little re-
search interest. Ahmed and Carter [1] propose to
project the image of a person to the center of the
camera based on the known position before comput-
ing HoG features. However, their approach cannot
be efficiently adapted to state-of-the-art CNN detec-
tors since their computational efficiency results from
sharing computations for all detections within a sin-
gle image. Other approaches include [19] focusing
on efficient HoG computation, and [20] proposing
a feature descriptor for head detection in depth-only
images. All of these are restricted to a top-view setup
where the ground plane is parallel to the camera sen-
sor, which is not the case for our approach.

Some work has been published concerning deep
CNNs operating on depth data. For example,
Gupta et al. [11] show the possibility of fine-tuning
an ImageNet network with depth images. They pro-
pose the HHA encoding, which represents each depth
pixel by three features, namely horizontal disparity,
height above ground, and the angle of gravity. Ei-
tel et al. [4] achieve similar results with a simpler
encoding, where they apply a static colormap to the
depth data, i.e. simply using a pseudocolor image de-
rived from the depth values. Both reuse freely avail-
able RGB networks and fine-tune them with their en-
coded depth data. Closely related to our depth fusion
approach, Liu et al. [17] also formulate pedestrian
detection as a CNN fusion problem. However, they
also constrain their approach to standard surveillance
viewpoints as opposed to our highly elevated view-
point. Additionally, they exploit multispectral data
(i.e. thermal imagery) in contrast to our depth data.

Most modern object detectors (e.g. [6, 9, 10, 22])
rely on a greedy algorithm for NMS. This post-
processing step is commonly not involved in the
training process and each detection is treated inde-
pendently. Wan et al. [26] propose a CNN training
loss which is aware of NMS. However, it still relies
on the same greedy NMS algorithm with fixed pa-
rameters. Hosang et al. [13] propose a CNN archi-



tecture capable of learning and performing NMS by
itself as replacement for the traditional greedy algo-
rithm. We adopt their NMS approach, extend it for
handling sparse detections, and train a similar model
for our pedestrian detector.

3. Detection Pipeline

In the following, we briefly summarize the base-
line CNN model (Section 3.1) and discuss the pro-
posed extensions in more detail (Section 3.2). Sec-
tion 3.3 then explains the NMS CNN model.

3.1. Baseline Faster R-CNN Model

Due to the success of deep learning, many CNN
based object detectors suitable for our experiments
have been published. At the time of writing, the
model offering the best trade-off between detection
and runtime performance is Faster R-CNN [22]. It
has a two-stage architecture which allows to adapt a
classification CNN for the task of object detection.
Both stages share computation by operating on the
same features extracted from the convolutional part
of the classification network. The first stage con-
sists of a region proposal network (RPN) that gen-
erates a set of proposals based on these convolu-
tional features. In the second stage, a RoI Pooling
layer [9] pools the features inside the various pro-
posal boxes to fixed-size (i.e. the size of the under-
lying network’s last pooling layer’s output) feature
maps. These features are then passed through the
fully-connected (FC) classification layers to perform
classification and bounding box refinement on each
subwindow.

We fine-tune the freely available Faster R-CNN
model based on the Zeiler & Fergus (ZF) net-
work [27]. Due to overfitting concerns resulting from
our small datasets, we omit the last hidden layer
(FC7). Instead, we directly connect the first hidden
FC layer (FC6) to the output layers.

3.2. Faster R-CNN with Depth Fusion

A straightforward approach to incorporate the
depth modality for detection is to adjust the network
dimensions such that it can deal with RGB-D im-
ages. However, this approach demands a lot of train-
ing data and further leads to a significant amount of
computational effort. Instead, we follow the origi-
nal idea of Faster R-CNN and fine-tune existing RGB
models. To this end, we explore different approaches
to fuse two modalities in a Faster R-CNN model.

Depth Encoding

Fine-tuning an RGB CNN with depth data poses the
problem of having a different number of input chan-
nels. The networks expect three channels, whereas
depth is a single channel. We follow Eitel et al. [4]
and use a colormap to spread the depth information
across the three required channels. However, instead
of directly using the depth w.r.t. to the camera, we
compute height above ground (HaG) values derived
from the dense depth maps. To this end, we automat-
ically estimate the ground plane from the recorded
depth information and compute the point-to-plane
distance for each point in the depth map. The advan-
tage of HaG over raw depth data lies in lower data
variation, since the height of a person does not de-
pend on the position relative to the camera in con-
trast to horizontal disparity or depth. The resulting
HaG values are finally colored using the parula col-
ormap1. Figure 3 shows an example of such an input
pair (RGB and HaG).

Our preliminary experiments showed that this en-
coding outperforms the HHA encoding proposed by
Gupta et al. [11] for our application scenario. Thus,
for the following experiments and evaluations we
stick to the proposed HaG encoding.

Fusion Architectures

We investigate two architectures for the problem
of fusing two Faster R-CNN models operating on
different modalities, namely (1) late fusion and
(2) mid-layer fusion. A visualization of both fusion
architectures can be found in Figure 2.

The two approaches differ primarily in the loca-
tion of the fusion. As the name suggests, late fusion
pulls the modality fusion to the latest possible loca-
tion in the network (i.e. the last hidden layer FC6),
resulting in two nearly independent network streams
for RGB and HaG data. Note that they are not en-
tirely independent since we also fuse the mid-layer
features for the RPN in order to get unified region
proposals for both streams. In the mid-layer fusion
architecture, on the other hand, fusion occurs solely
after the last convolutional layer. These layers are
known to extract spatially related semantic repre-
sentations as opposed to earlier layers or FC layers,
which extract low-level features or spatially unre-
lated high-level features, respectively [27]. This ear-
lier fusion approach significantly reduces the number

1MATLAB’s default colormap since version R2014b.



FU
SI
ON

RPN

RGB

ZF
CONV

RoI
Pooling

ZF
FC

DEPTH

ZF
CONV

RoI
Pooling

ZF
FC

FC
FUSION

(a) Late fusion.

FU
SI
ON

RPN

RGB

ZF
CONV

RoI
Pooling

ZF
FC

DEPTH

ZF
CONV

(b) Mid-layer fusion.

Figure 2: Illustration of our two approaches to fuse RGB and depth data in Faster R-CNN: (a) late fusion
and (b) mid-layer fusion. Blue boxes correspond to CNN layers (or groups of layers), green boxes to single-
modality feature maps, and orange boxes to fused feature maps. The arrows indicate the forward direction of
the network.

of model parameters (i.e. from 117M to 45M) and
replaces the two independent network streams by a
single one operating on the fused representations.

Fusion Layers

Given two feature maps Mrgb,Mhag ∈ RH×W×C ,
the output of a fusion layer must be another feature
map Mfused ∈ RH×W×C , where H,W,C denote
the height, width, and number of channels of the fea-
ture maps, respectively. The constraint of producing
a feature map with the same dimensionality is nec-
essary since we cannot change the underlying CNN
model, because we want to exploit the benefits of
transfer learning and preserve features learned from
large scale datasets, e.g. ImageNet.

We consider six different fusion layers, namely
(1) average, (2) sum, (3) max, (4) FC, (5) conv, and
(6) inception fusion. The first set of fusion layers
performs element-wise, parameterless operations:

(1) takes the average value at every spatial location

and channel, i.e. Mfused
h,w,c =

Mrgb
h,w,c

2 +
Mhag

h,w,c

2 .

(2) computes the sum of both features at every
spatial location and channel, i.e. Mfused

h,w,c =

Mrgb
h,w,c +Mhag

h,w,c.

(3) takes the maximum value at every spa-
tial location and channel, i.e. Mfused

h,w,c =

max
(
Mrgb

h,w,c,M
hag
h,w,c

)
.

The second set consists of parametrized operations
which need to be optimized during training. We
first concatenate the feature maps along the chan-
nel dimension to get Mconcat

h,w = Mrgb
h,w ‖M

hag
h,w ∈

RH×W×2C . The following layers need to perform
dimensionality reduction in order to fit Mfused again:

(4) applies an FC layer to Mconcat. Note that we
can only use this layer for late fusion albeit not
for mid-layer fusion. The inner product per-
formed by this layer treats the input as vector,
and therefore destroys the spatial relationship
of the features as required by the RPN and RoI
pooling layer.

(5) consists of a 1 × 1 convolutional layer with C
filters operating on Mconcat.

(6) is inspired by GoogLeNet’s [24] inception mod-
ule. It consists of parallel convolutional layers
operating on Mconcat with 1 × 1, 3 × 3 and
5 × 5 convolutions, and another parallel layer
with 3× 3 max-pooling. The concatenated out-
put features of these layers give the fused fea-
ture map Mfused

h,w = Mconv1
h,w ‖Mconv2

h,w ‖Mconv3
h,w ‖

Mpool
h,w ∈ R

H×W×C .

All fusion layers are followed by rectified linear unit
(ReLU) non-linearities.

The spatial relationship between two features is
clearly given by the location inside the input feature
maps for all fusion layers. This is not necessarily true
for the channel dimension. Element-wise fusion lay-
ers treat every channel independently, so subsequent



Figure 3: Left: An RGB image from our dataset.
Right: The corresponding colored HaG image. The
colormap ranges from blue (low, i.e. close to the
ground plane) to yellow (high).

layers must learn how to extract the optimal relation-
ships. The second set of layers (i.e. the parametrized
fusion layers), however, are able to directly learn the
optimal channel relationships, since they process the
entire tensor consisting of all channels at a particular
spatial location.

3.3. Non-Maximum Suppression

The original Faster R-CNN [22] model relies on a
post-processing step for NMS. They use a greedy al-
gorithm to suppress predicted boxes based on a con-
stant intersection over union (IoU) overlap threshold.
This is necessary since the detection model treats ev-
ery prediction independently from each other, result-
ing in multiple detections of the same object. How-
ever, choosing a constant threshold involves a trade-
off between precision and recall. Additionally, the
model is heavily tuned to the validation set and thus,
the detector may perform worse if the density of ob-
jects differs significantly between training and run-
time.

To overcome the drawbacks of this static algo-
rithm, we follow Hosang et al. [13] and train an ad-
ditional CNN to replace the greedy NMS algorithm.
Their so-called Tnet model does not need additional
ground truth labeling. It can be trained using the
output of our detection model (i.e. the boxes and
corresponding detection confidence scores) and the
ground truth labels of our dataset.

Architecture

Tnet is a fully-convolutional network operating on
a two-dimensional grid, which discretizes the detec-
tion boxes’ coordinate system. Each box is mapped
to the grid based on the coordinates of its center. The
input of the network is two-fold, namely a score map
and an IoU map. The score map encodes the posi-

tions and confidence scores of the detections after ap-
plying traditional NMS with several thresholds. Sec-
ond, the IoU map encodes the overlaps of boxes in
a pre-defined neighborhood of size N × N , respec-
tively. The network extracts correlated features per
cell by performing N ×N convolutions on the score
map and 1 × 1 convolutions on the IoU map. The
concatenated features are then further processed by
three consecutive 1 × 1 convolutional layers, which
learn to rescore the input detections in order to pro-
duce the final output score map. We refer the inter-
ested reader to [13] for a detailed description of the
architecture and training process.

Implementation Details

We implement Tnet using Caffe [14] following the
description in [13] with a few adaptions to fit our
needs. We reduce the number of filters from 512
to 128 per layer and increase the grid downsam-
pling factor from 4 to 6. Both modifications do
not harm the performance in our experiments, but
result in a decent speedup. We use a broad range
[1.0, 0.8, 0.7, . . . , 0.1] of NMS thresholds for the
score map computation to provide as much informa-
tion as possible to the network, and use N = 11 for
the neighborhood.

Further, we tweak the loss weighting since — in
contrast to Hosang et al. — we only have a sparse set
of detections and thus, most input values are zero. To
this end, we ignore the loss of cells without any de-
tection in the N×N neighborhood and normalize the
weights by the number of enabled cells. This leads to
a much more stable convergence in our experiments.

During training, we perform data augmentation by
randomly flipping the coordinate system both verti-
cally and horizontally. Additionally, we move each
box in x and y-direction by a random number of pix-
els drawn from a normal distribution with zero mean
and a standard deviation of 6.

4. Evaluation and Discussion

Our experiments regarding RGB and HaG fusion
are based on the publicly available Python code of
Faster R-CNN [22], adapted for multimodal input ac-
cording to the architectures described in Section 3.2.
We initialize all layers, which are present in the orig-
inal model, with the publicly available pre-trained
weights of Faster R-CNN. Note that also the layers
belonging to the HaG stream are initialized in this



way. All weights of the newly introduced fusion
layers are initialized using Xavier initialization [14].
Following [22], we train the models with stochastic
gradient descent (SGD) using the approximate joint
training method2. We train the model for 50k iter-
ations with a learning rate of 10−4. After 20k it-
erations, the learning rate is lowered by a factor of
10. We train Tnet following the training process
in [13] with the Adam solver [15] and MSRA ini-
tialization [12] using a learning rate of 10−4. Addi-
tionally, we perform gradient clipping such that the
L2 norm of all gradients does not exceed a value of
1000. Momentum is set to 0.9 and weight decay to
5 · 10−4 for all experiments (i.e. Faster R-CNN and
Tnet).

4.1. Dataset

Our custom dataset consists of images from video
sequences recorded on two different locations using
a stereo setup mounted on a telescopic rod or a traf-
fic light pole, respectively, filming downwards to the
scene. We use the discrete-continuous approach from
Shekhovtsov et al. [23] to compute the stereo dispar-
ities and calibrate the camera setup using the toolbox
of Ferstl et al. [7]. We train our models using 447
samples from an uncontrolled recording on a pub-
lic site, which includes many different people. The
validation set consists of 82 samples from the same
recording. We ensure that the validation set does not
contain samples of people present in the training set.
For testing, we use 321 samples from a recording in a
controlled environment on a separate location, com-
prising a different background than the training set.
This split is chosen to test the generalization capabil-
ities of the models and to make sure that the models
do not overfit to the static background in the training
set. Example images of the validation and test set can
be found in Figure 5.

4.2. Performance Metrics

We stick to the evaluation metrics of the Pas-
cal VOC challenge [5]. More specifically, we com-
pute the average precision (AP) as the mean inter-
polated precision at eleven equally spaced recall lev-
els as defined in [5]. A detection will be considered
correct (true positive), if its bounding box overlaps
more than 50% with a ground truth bounding box

2Published as supplemental material to [22]. Our prelimi-
nary experiments validated the similar performance and reduced
complexity compared to the original alternating training method.

Model AP
mid-layer late

RGB-only 81.95 (0.35)

HaG-only 52.05 (3.55)

sum fusion 88.60 (1.00) 87.55 (0.65)

average fusion 87.00 (0.00) 87.70 (0.90)

max fusion 89.89 (0.20) 87.65 (0.75)

conv fusion 86.35 (0.55) 85.60 (1.10)

inception fusion 88.85 (0.85) —

Table 1: Detection performance of our several fu-
sion architectures and layers compared to the base-
line RGB-only model. The AP values are averaged
over two trainings with random initialization. The
standard deviation is given in parenthesis.

(i.e. IoU > 0.5). Double detections are considered
incorrect (false positive).

4.3. Experiments with Depth Fusion

To evaluate the influence of the additional depth
modality, we compare our several fusion approaches
from Section 3.2 to the baseline RGB-only model.
The results in Table 1 show that all fusion combina-
tions (i.e. mid-layer and late fusion in combination
with our several fusion layers) outperform the base-
line by ≈ 3.7 to 8.0 AP points. This is a clear indi-
cator that the additional depth modality helps to im-
prove the detection results of a Faster R-CNN model.
Further, the values reveal that mid-layer fusion is su-
perior to late fusion (except for the average fusion
model). This indicates that the mid-layer represen-
tations learned by the network are more eligible for
modality fusion than representations learned by later
layers. We hypothesize that the mixture of semantic
meanings and spatial and visual details in these mid-
layer representations provides more complementary
features than the high-level representations learned
by the last hidden FC layers. Thus, the network is
able to gain more information from the combination
of both modalities.

4.4. Experiments with NMS

To evaluate the performance of our learned Tnet
model from Section 3.3, we compare it to the original
greedy NMS algorithm used in Faster R-CNN and
also in the experiments from Section 4.3. We train
Tnet with the raw detection boxes (i.e. before NMS)
obtained from our mid-layer fusion model with max



Model AP
all overlap no overlap

Tnet 90.10 87.00 95.90

NMS0.9 41.20 37.30 49.40
NMS0.8 67.80 61.80 76.40
NMS0.7 85.60 78.10 93.40
NMS0.6 89.70 82.30 95.40
NMS0.5 88.30 81.00 95.90
NMS0.4 87.10 79.30 95.30
NMS0.3 86.30 77.90 95.20
NMS0.2 83.30 74.00 95.00
NMS0.1 78.20 65.40 94.30

Table 2: Comparison of greedy NMS with several
overlap thresholds and our Tnet model. AP values
are shown for the entire test set (first column), sam-
ples with overlapping ground truth boxes (second
column), and samples without overlapping ground
truth boxes.
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Figure 4: Evaluation of Tnet and the best performing
greedy NMS thresholds.

fusion (i.e. the model yielding the best performance
on our dataset). Of course, the same model is used
during testing to obtain the raw detections for Tnet
and greedy NMS.

Table 2 summarizes the performance results of
Tnet and several greedy NMS thresholds in terms of

AP. To emphasize the contribution of Tnet, we split
the test set into samples with (1) at least two over-
lapping ground truth annotations and (2) without any
overlapping ground truth annotations and evaluate
both splits independently. The overall performance
boost of Tnet measured over all samples is negligi-
ble. However, this comes mainly from the fact that
the non-overlapping samples dominate the test set
and Tnet cannot outperform the best NMS threshold
in this case. The more interesting and challenging
part is the set of overlapping samples, which poses a
much harder problem for NMS. Here, Tnet improves
AP by 4.7 points compared to the best NMS thresh-
old. These values show that Tnet — in contrast to
greedy NMS — is able to adapt to scenes with vary-
ing pedestrian densities. Another advantage of our
learned model is that it eliminates the need to choose
a constant overlap threshold for production. Choos-
ing such a threshold always involves a trade-off be-
tween precision and recall, as shown in Figure 4. We
see that low greedy NMS thresholds of 0.4 and 0.5
provide high precision, but low recall. Higher thresh-
olds, however, improve recall at the cost of lower
precision. Although Tnet cannot strictly outperform
all NMS thresholds, it provides a smooth and high
enough precision over the entire recall range. Fig-
ure 6 shows some results of both greedy NMS and
Tnet on our datasets.

4.5. Runtime Performance

The following runtime measurements are per-
formed on a workstation consisting of a 3.20GHz
Intel Core i5 CPU and an NVIDIA GTX 970 with
4GB memory. Our RGB-only model takes about
67ms for an image of 800 × 600 pixels. The mid-
layer fusion architecture is just slightly slower with
87ms, and the late fusion takes 119ms. The origi-
nal NMS procedure costs about 12ms. Tnet approx-
imately doubles this runtime with about 28ms.

5. Conclusion

In this work, we addressed the task of pedestrian
detection from an elevated viewpoint in RGB-D im-
ages. We proposed two extensions to the state-of-the-
art Faster R-CNN detection model by fusing RGB
and depth representations at different layers of the
model. Several ways of fusing those representa-
tions in terms of different fusion layers were pre-
sented. Our experiments showed that mid-layer rep-
resentations are most eligible for fusion. Further,



(a) Validation set. (b) Test set.

Figure 5: Examples of the validation set and test set. The boxes correspond to the detections of the best
performing model (i.e. mid-layer fusion architecture with max fusion).

Figure 6: Qualitative comparison of the best performing greedy NMS threshold (first row) and Tnet (second
row). Both models operate on the same precision. Selecting a fixed greedy NMS threshold leads to missed
detections (first two columns) and multiple detections for a single person (rightmost column), whereas our
modified Tnet is able to cope with such scenarios.

we extend Faster R-CNN with a recent learnable ap-
proach to NMS, which improves performance espe-
cially in crowded situations and applications with
varying pedestrian density.
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